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Supermodular Functions

Supermodular Functions

A function f from Rd to R is supermodular if for every u and v in Rd ,
f (u) + f (v) ≤ f (min(u, v)) + f (max(u, v)), where min(u, v) and max(u, v)
are the coordinate-wise minimum and maximum of u and v , respectively.

Example:

f (u) = 1, f (v) = 3, f (min(u, v)) = 2, f (max(u, v)) = 4
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Main Goal

Characterize piecewise-linear concave supermodular functions. Application:
Statistics

Given random variables X1, ...,Xn ∈ R
Distribution of random vector (X1, ...,Xn): density function
p : Rn → R
If p(x) = exp(f (x)), where f is supermodular, then the random
variables X1, ...,Xn are positively dependent.
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Subdivisions in R2

Point Configuration in R2

A point configuration is a finite collection of points A = {a1, ..., an} in
Euclidean space R2.

Subdivision in R2

A subdivision of a point configuration A ⊂ R2 is a collection S of convex
polygons, all of whose vertices are points in A, that satisfies the following
conditions.

1 The union of all of these polygons is the convex hull of A, denoted
conv(A).

2 Any pair of these polygons either do not intersect, or they intersect in
a common vertex, or in a common side.

If all of the polygons in S are triangles, then S is a triangulation.
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Subdivisions in R2: Example
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Bimonotone Subdivisions in R2

Bimonotone Subdivisions in R2

A subdivision S of a point configuration A is bimonotone if each of the
polygons P ∈ S is bimonotone. A polygon is bimonotone if each of its
sides lies on a line given by an equality

ax + by + c = 0,

where ab ≤ 0.
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Bimonotone Subdivisions in R2: Example
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Bimonotone Subdivisions in Rd

A point configuration is a finite collection of points in Rd .

A subdivision of a point configuration A ⊂ Rd is a collection S of
convex polytopes that satisfy the conditions previously specified.

Bimonotone Subdivisions in Rd

A subdivision T on a point configuration A ⊂ Rd is bimonotone if each
of its polytopes P ∈ T is bimonotone, or in other words, if each of its
sides lies on a hyperplane defined by an equation

a1x1 + a2x2 + · · ·+ adxd + b = 0,

where all but at most two of the coefficients a1, ..., ad are zero. If two of
them are nonzero, say ai and aj , then aiaj < 0, i.e. they have opposite
signs.

Haneul Shin (Bergen County Academies) Bimonotone Subdivisions in High Dimensions 8 / 13



Driving Question

Place a pole of some height yi at each of the points in point
configuration A

Tent function: spread a piece of tarp on top over all of the poles

This creates a subdivision of A

The tent function hX ,y is supermodular if and only if the subdivision
it induces is bimonotone.

Driving Question: What is the characterization of tent-pole heights that
give rise to a bimonotone subdivision?
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TOPCOM
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Algorithm

Input: Subdivision

For each polytope, iterate over each of its faces and check if it is
bimonotone

Output: If the subdivision is bimonotone
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